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A Zika Vaccine Targeting 
NS1 Protein Protects 
Immunocompetent Adult Mice in a 
Lethal Challenge Model
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Zika virus (ZIKV) is a mosquito-borne flavivirus that has rapidly extended its geographic range around 
the world. Its association with abnormal fetal brain development, sexual transmission, and lack of a 
preventive vaccine have constituted a global health concern. Designing a safe and effective vaccine 
requires significant caution due to overlapping geographical distribution of ZIKV with dengue virus 
(DENV) and other flaviviruses, possibly resulting in more severe disease manifestations in flavivirus 
immune vaccinees such as Antibody-Dependent Enhancement (ADE, a phenomenon involved in 
pathogenesis of DENV, and a risk associated with ZIKV vaccines using the envelope proteins as 
immunogens). Here, we describe the development of an alternative vaccine strategy encompassing 
the expression of ZIKV non-structural-1 (NS1) protein from a clinically proven safe, Modified Vaccinia 
Ankara (MVA) vector, thus averting the potential risk of ADE associated with structural protein-
based ZIKV vaccines. A single intramuscular immunization of immunocompetent mice with the 
MVA-ZIKV-NS1 vaccine candidate provided robust humoral and cellular responses, and afforded 
100% protection against a lethal intracerebral dose of ZIKV (strain MR766). This is the first report 
of (i) a ZIKV vaccine based on the NS1 protein and (ii) single dose protection against ZIKV using an 
immunocompetent lethal mouse challenge model.

First isolated in 1947 in Uganda, Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) was associated with 
only occasional cases of febrile disease and considered of minor public health significance. In 2007, the first large 
epidemic of ZIKV was recorded on Yap Island in Micronesia, followed by a 2013 outbreak in French Polynesia. 
These events raised the profile of ZIKV as an emerging infectious disease1. Since its appearance in Brazil in late 
2014, the virus has rapidly spread through the Americas in areas with competent populations of Aedes mosquito 
species. Subsequently, ZIKV has been implicated in human-to-human sexual transmission2, neurological mani-
festations including microcephaly in infants3, and Guillain-Barré syndrome (GBS) in adults1. In February of 2016, 
the World Health Organization (WHO) declared the ZIKV outbreak a “Public Health Emergency of International 
Concern”; as of this writing, the global risk assessment for ZIKV infections has not changed due to continued 
expansion of ZIKV to new geographical areas, where competent vectors are present.

ZIKV is transmitted to humans principally by infected Aedes aegypti and Aedes albopictus mosquitoes, the 
same species that transmit dengue (DENV1-4) and chikungunya viruses. Phylogenetic analyses of ZIKV demon-
strate 2 major lineages: African and Asian, with >96% amino acid sequence identity4, constituting a single sero-
type5. The Asian lineage has been responsible for all ZIKV outbreaks in the Pacific and the Americas. Given the 
rapid geographic spread and likely potential for continued autochthonous transmission of ZIKV throughout the 
Americas, a vaccine is urgently needed to provide protection from ZIKV disease and ZIKV congenital syndrome 
(ZCS).
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Antibody-Dependent Enhancement (ADE) of viral infection has been documented in vitro and in vivo 
as a potential risk with ZIKV structural proteins (prM/E)-based vaccines6–8. This is especially relevant for 
cross-reactive antibodies between DENV and ZIKV, because DENV seroprevalence is >90% in many parts of 
the Americas affected by ZIKV9. Since antibodies binding to prM or E proteins of ZIKV or DENV have been 
shown to increase infection of monocytes through Fc gamma receptors7, there is a risk that DENV antibodies 
could contribute to more severe ZIKV infections and/or ZCS or ZIKV antibodies from immunization could 
enhance DENV disease. Until larger-scale Phase II-III clinical studies with ZIKV prME immunogens have been 
performed to evaluate the threat of ADE in dengue endemic areas (e.g. enhancement of DENV infections by 
ZIKV immunity or the potential for adverse effecs of live attenuated ZIKV vaccine due to pre-existing den-
gue immunity), ADE will remain a concern for use of these vaccines in the populations most in need of ZIKV 
immunization. While the E protein is commonly considered as a desired antigenic target for eliciting protec-
tive neutralizing antibodies against ZIKV, nonstructural protein-1 (NS1) has been shown to induce protective 
non-neutralizing antibodies that target virus-infected cells through Antibody-Dependent Cellular Cytotoxicity 
(ADCC) and complement-dependent pathways10,11. Therefore, NS1 protein and anti-NS1 antibodies have been 
proposed as flaviviral vaccines and therapeutic candidates, respectively10,12,13 (see also the supplementary text). 
Unlike potential enhancement of infection between DENV and ZIKV anti-prME antibodies7,14, anti-NS1 anti-
bodies should not pose a risk of ADE to vaccinated individuals since NS1 proteins are not packaged with the virus 
or found on the surface of virions15.

Here we describe the generation of a ZIKV vaccine based on delivery of the NS1 protein by a recombinant 
Modified Vaccinia Ankara (MVA) vector which has previously induced robust and durable protective immunity 
in pre-clinical and clinical HIV vaccine trials16,17 and preclinical Ebola studies18. Immunocompetent mice were 
immunized with the NS1 vaccine, and immunogenicity and protective efficacy were assessed in a newly devel-
oped lethal intracranial challenge model19.

Results
Construction and characterization of MVA-ZIKV-NS1 vaccine.  We generated a ZIKV vaccine (MVA-
ZIKV-NS1) (Fig. 1a) by inserting sequences of the NS1 gene of a 2015 Asian isolate (Suriname) into the MVA 
vector. Like other flaviviral NS1 proteins, ZIKV NS1 obtained from infected cell lysates migrates as a doublet 
(intracellular NS1 non-glycosylated, lower band) and cell-surface NS1 (glycosylated, upper band)20. Only fully 
glycosylated NS1 was found in the supernatants (MW of ~45 KDa) (Fig. 1b).

Protective immunity.  Immunogenicity and protective efficacy were assessed in a newly developed lethal 
intracerebral (i.c.) challenge model19. Since current immunocompetent mouse models for ZIKV are not suscep-
tible to lethal outcome, and type I/II interferon receptor-knockout mice used extensively as a challenge model for 
ZIKV vaccine candidates do not recapitulate normal immune responses of human vaccinees, our newly devel-
oped i.c. challenge model using a neurovirulent African strain of ZIKV (MR766) represents a stringent test of 
immunity in a normal mouse. Outbred CD-1/ICR mice were immunized by the intramuscular (i.m.) route with 
either MVA-ZIKV-NS1 or phosphate buffered saline (PBS) following a prime-only or a prime-boost regimen, 
challenged i.c. with MR766, and observed for weight loss and overt signs of illness.

All vaccinated mice demonstrated robust NS1-specific antibody responses, as measured by ELISA, as early as 
2 weeks post-immunization; responses increased 2 weeks later and following booster immunization (p < 0.01) 
(Fig. 1c,d). Upon challenge, immunized mice were fully (100%) protected after both prime-only and prime-boost 
immunizations (Fig. 2a–d). No significant symptoms or weight loss were observed in any vaccinated animal. In 
contrast, most sham-immunized animals lost weight (Fig. 2a and b), demonstrated signs of neurological dis-
ease, and were euthanized according to approved IACUC protocols (~70–80% mortality). The titer of anti-NS1 
antibodies in single and prime-boost regimen increased after challenge 14.3- and 3.1-fold, respectively (Fig. 1c 
and d), indicating that the prime-boost vaccination series might have limited challenge virus replication more 
effectively than a single immunization. Moreover, the African challenge virus induced de novo a high level of 
anti-E antibodies that bound and neutralized the heterologous Puerto Rico strain isolated in 2015 (PRVABC59) 
comparable to the level that was observed with the 2 unvaccinated mice that survived the challenge and human 
ZIKV positive sera (Fig. 3a and b), confirming that ZIKV constitutes a single serotype5. There was also a correla-
tion between the level of binding (ELISA) and neutralizing antibodies post-challenge in mice (Fig. 3c), consistent 
with recent observations of ZIKV infection in rhesus monkeys21.

Functional activities of anti-NS1 antibodies and T cell responses.  Since NS1 proteins are not pres-
ent on incoming virions (challenge virus), it is not expected that anti-NS1 antibodies provide sterile immunity. 
Therefore, NS1 is likely to protect through at least two different mechanisms: i) Fc-mediated non-neutralizing 
antibodies that bind virus-infected cells displaying NS1 proteins, leading to cell death through complement fix-
ation, ADCC, and phagocytosis; and ii) antigen-specific CD8+ T cells targeting NS1 epitopes of infected cells in 
an MHC I restricted manner. Anti-mouse-IgG1, -IgG2a, -IgG2b, -IgG3, -IgM, and -IgA isotyping demonstrated 
that the anti-NS1 humoral response was predominantly comprised of IgG2a (p < 0.001) (Fig. 4a), a hallmark of 
a dominant Th1 lymphocyte populations, important for mediating complement and ADCC activities observed 
with protective flavivirus anti-NS1 polyclonal and monoclonal antibodies in mice11,22,23. Protection by anti-NS1 
IgG2a has been shown to target NS1 proteins displayed on infected cells and to recruit lymphoid cells, bearing 
Fc-γ receptors, to kill infected cells through ADCC11. Given that NS1 is not present on the surface of virions, yet 
is displayed on the surface of virus-infected cells, we hypothesized that a protective humoral response would be 
initiated by the Fc portion of anti-NS1 antibodies. To address this, we tested NS1 immune sera for ADCC activity 
using ZIKV infected Vero cells in an ADCC Reporter Bioassay where binding of the Fc portion of antibody to 
the FcγRIIIa of the effector cells (Jurkat) results in a quantifiable luminescence signal from NFAT (nuclear factor 
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of activated T-cells) pathway (ADCC Reporter Bioassay, Complete Kit WIL2-S from Promega) (see also Method 
section). Flow cytometry using sera from MVA-ZIKV-NS1 immunized mice verified the expression of ZIKV NS1 
in Vero cells at 48 hours post-inoculation (Fig. 4b). ADCC activity was demonstrated (Fig. 4c) in the sera of 15 
out of 16 NS1-immunized mice, compared to 5 control sera (generated by an Adeno-ZIKV prME VLP vaccine)24 
having GMT of 31,657 and 1,056 in ELISA and PRNT50, respectively; data not shown) (p < 0.05). An assay was 
also developed to test the ability of immune sera to utilize complement fixation for the killing of virus-infected 
cells. The MVA-ZIKV-NS1 sera, but not the naïve sera, clearly showed specific lysis in the presence of comple-
ment (Fig. 4d) (p < 0.01). This was consistent with elicited antibodies being predominantly of the IgG2a isotype 
(Fig. 4a).

At ten days post-immunization, NS1-specific CD8+ T cells were raised in immunized mice (Fig. 4f). 
Intracellular cytokine staining analysis of splenocytes taken from immunized mice 10 days after a single vaccina-
tion with MVA-ZIKV-NS1 demonstrated a significant number (p < 0.001) of IFNγ- and IL2-expressing CD8+ T 
cells in response to stimulation with a ZIKV NS1 peptide library, but not in response to negative control peptides 
(Fig. 4f). Consistent with previous reports21, NS1-specific CD4+ T cell responses were not observed above the 
limit of detection at this early time point (Fig. 4e).

Clearance of ZIKV after challenge in brains of vaccinated mice.  To assure that ZIKV is cleared from 
brains of vaccinated animals, all MVA-ZIKV-NS1 immunized mice were sacrificed at the end of experiment (Day 

Figure 1.  Construction, Western blot, and immunogenicity of MVA-ZIKV-NS1 vaccine in CD-1/ICR mice 
following single or prime-boost immunization. (a) ZIKV NS1 gene (Suriname 2015 isolate Z1106033) was 
inserted into the MVA restructured and modified deletion III. This insertion site has been identified to support 
high expression and insert stability. PmH5, modified H5 promoter. Numbers are coordinates in the MVA genome. 
MVA-ZIKV-NS1 is replication competent in avian cells (producing both MVA and inserted transgenes) but is 
replication deficient in mammalian cells producing mainly inserted transgenes (e.g. NS1) but not infectious 
MVA viruses. Image of the ZIKV NS1 dimer is from RCSB PDB (www.Rcsb.org) of PDB ID 5IY341 (b) Western 
blot, DF1 chicken fibroblasts cells were infected with either wild type MVA (wt MVA) or MVA-ZIKV-NS1 
(MVA-NS1) at multiplicity of infection (MOI) of 0.1. The expression of full-length NS1 was confirmed using 
anti-ZIKV-NS1-protein mouse monoclonal antibody (IgG1). Recombinant ZIKV NS1 protein (Rec. NS1) 
served as a positive control. A loading control lane (Ctrl lane) served as another negative control. Like other 
flaviviral NS1 proteins, ZIKV NS1 obtained from infected cell lysates (LYS) migrates as a doublet (intracellular 
NS1 (non-glycosylated, lower band) and cell-surface NS1 (glycosylated, upper band)20. Only fully glycosylated 
NS1 was found in the supernatants (SUP). (c) Single dose group, endpoint dilution geometric mean titer (GMT) 
determined by ELISA using sera from mice obtained at 2 and 4 weeks post-immunization (vac) and 3 weeks 
post-i.c. challenge (Ch) with 105 PFU of MR766. (d) Prime-boost group, endpoint dilution GMT determined by 
ELISA using sera from mice obtained at 2 and 4 weeks (post-prime) and at 4 weeks (post boost) immunization 
and 3 weeks post i.c. challenge with 105 PFU of MR766.

http://www.Rcsb.org
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21 post-challenge), and viral titers determined for brain homogenates using plaque assays25. In line with lack 
of weight loss, any adverse disease symptoms, and complete survival of vaccinated mice, we could not find any 
residual ZIKV at the end of observation period. In contrast, control mice died with a high central nervous system 
(CNS) viral (up to 8 log10 PFU/g tissue) between Days 5–8 post-challenge (Fig. 5a and b). In one of the control 
mice that survived until Day 17, a lower titer of virus (~5 log10 PFU/gram of tissue) was detected, whereas no 
virus was detected in the brain of the single surviving mouse in the control group euthanized on Day 21 (Fig. 5a 
and b). In a separate experiment, the brain titers at Day 5 post-challenge (previously determined as the peak virus 
titer)26 was determined in groups of 3 mice vaccinated with a single dose of the MVA-ZIKV-NS1 and compared to 
that of unvaccinated animals. The mean brain titer in i.c. challenged mice that had received a PBS immunization 
was 7.2 log10 PFU/g tissue. In contrast, no detectable viral load was observed in two of three MVA-ZIKV-NS1 
immunized mice (<1.6 log10 PFU/g tissue). The mean viral load in the brains of MVA-ZIKV-NS1 immunized 
mice (1.9 log10 PFU/g tissue) was 200,000-fold lower than that observed in the PBS immunized mice (p > 0.001) 
(Fig. 5c) indicating a rapid clearance of the infectious virus in brains of vaccinated and challenged mice. We did 
not attempt to measure viremia in sera of mice post-challenge because as no peripheral viremia was previously 
found after i.c. inoculation with the MR766 virus26.

Vector Immunity.  To determine if pre-existing immunity to the MVA vector could have a detrimental effect 
on immunogenicity of subsequent MVA vaccinations, antibody titers against Ebola virus glycoprotein (EBOV 
GP) were assessed in mice sequentially vaccinated with MVA-ZIKV-NS1 and MVA-EBOV, previously shown 
to protect rodents and Rhesus macaques after a single dose vaccination18. Mice were vaccinated with 1 ×107 
TCID50 MVA-ZIKA-NS1 or PBS. At 8 weeks post-immunization, all mice were vaccinated with 1 × 107 TCID50 
MVA-EBOV. Four weeks later, animals were bled and antibody responses were measured against EBOV GP by 
ELISA (Fig. 5d). Despite previous MVA vaccination, no significant difference in endpoint dilution of anti-GP 
antibodies was observed (Fig. 5e).

Figure 2.  Survival of MR766 challenged MVA-ZIKV-NS1 immunized and sham-immunized mice (a–d). Mice 
were challenged i.c. with 105 pfu ZIKV (MR766) 28 days after immunization. (a) Mice immunized by single 
immunization only or (b) Prime-Boost regimen, maintained weight (blue) compared to sham-immunized 
controls (black). (c) Complete protection was afforded by either single immunization or (d) through the prime-
boost regimen while controls demonstrated 87.5% and 75% mortality, respectively (c,d).
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Discussion
We have utilized an MVA platform, previously tested in 4 clinical trials and shown to induce a durable anti-HIV 
immune response16,17, to produce an NS1-based vaccine against ZIKV. The sequences used in this vaccine con-
struct were derived from the Asian strain isolate Z1106033 (Suriname) of the 2015 ZIKV epidemic, which is 
heterologous to the sequence of MR766 (an African strain isolated in 1947 in Uganda and passaged 149 times in 
suckling mouse brain) used for challenge19. Nevertheless, because ZIKV is considered as a single serotype (total 
sequence divergence not exceeding divergence within flavivirus species)5, all ZIKV viruses are equally neutralized 
by human convalescent sera27, and the sequence of the NS1 protein has 99.3% similarity among all ZIKVs28, this 
NS1-targeting vaccine should be effective against all ZIKV strains19,27.

Although NS1 is expressed on infected cells, it is not packaged into ZIKV virions29. NS1 was chosen based 
on documented evidence that flavivirus NS1 has been sufficient to elicit a protective immune response to other 
flaviviruses in murine models10. This novel combination of vector platform and native antigen conformation 
has the potential to yield a vaccine that would provide protection with no risk of ADE. The ideal ZIKV vac-
cine is safe for women of child-bearing age, immunocompromised individuals (e.g. HIV or patients on immu-
nosuppressive drugs), children and the elderly, cost effective to manufacture, effective against all circulating 
ZIKV strains, and induces rapid onset of protective levels of antibody as well as T cell responses after a single 
dose. The MVA-ZIKV-NS1 vaccine is attractive for accelerated development because it provides the potential 
for a safe single dose elicitation of protective immune responses. MVA vaccines are replication competent in 
avian cells used for vaccine production, yet replication deficient in mammalian cells, making them putatively 
safe for humans, including immunocompromised or pregnant individuals. MVA has been shown to be safe in 
>120,000 vaccinees, including HIV-positive individuals, and has shown no reproductive toxicity in studies in 
pregnant rats30. For ZIKV vaccines, WHO has recommended non-live/inactivated approaches for vaccination of 
women of child-bearing age. The approach described herein is in accordance with this WHO recommendation, 
as MVA-ZIKV vaccines match the excellent safety profile of non-live/inactivated vaccines without the need for 
an adjuvant, and additionally offer the potential for high levels of immunogenicity and efficacy after a single dose. 
Moreover, an NS1 vaccine poses no predicted risk of induction of ADE in vaccinees living in areas endemic for 
DENV or other flaviviruses, which are the clear target market for a ZIKV vaccine. The potential risks of flavivi-
ral immunization in DENV-endemic areas has been highlighted by the increased incidence of hospitalizations 

Figure 3.  Anti-prME responses pre- and post-challenge. (a) Binding antibodies were determined by ELISA 
using prME Cos-1 antigen. (b) Neutralizing antibody titers were determined by plaque reduction neutralization 
assay in MVA-ZIKV-NS1 vaccinated mice pre-and post-challenge. (c) Correlation of post-challenge anti-prME 
ELISA titer and PRNT50 titers in MVA-ZIKV-NS1 vaccinated mice.
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of seronegative children (younger than 9 years old) vaccinated with Dengvaxia®, indicating that the vaccine 
could induce ADE in flavivirus naïve children31. Though no direct data have yet been published indicating ADE 
effects in human vaccinees with a prME-targeted immune response, risk of this potential complication has been 
highlighted by studies in which passive transfer of DENV or WNV immune sera to immunocompromised mice 
resulted in more severe disease progression upon ZIKV infection7. Given this risk, alternative immunogenic 
targets that are not associated with ADE to heterologous flaviviral infections are attractive candidates for use in 
areas of high flaviviral endemicity.

The i.c. challenge model used for efficacy assessments in the present studies demonstrates that peripheral 
immunity against NS1 can protect against virus in the CNS, thus preventing neurological disease by clearing virus 
in the brain of challenged mice. Furthermore, this model has demonstrated that the immune responses generated 
against the NS1 protein sequences of a contemporary Asian genotype affords complete protection against a het-
erologous African ZIKV, in line with the evidence that ZIKV constitutes a single serotype27. Conversely, African 
strains induced cross-lineage efficacy against Asian strains in mice and monkeys19,32. The use of MR766, a neu-
roadapted African lineage, for challenge, is relevant and represents a stringent test of vaccine immunity, because 
both African and Asian lineage ZIKV strains have displayed similar inhibitory effects on neuronal differentiation 
and organoid development using human induced pluripotent stem cells33, and have both demonstrated infection 
of neural progenitor cells that could be differentially associated with induction of microcephaly34. Moreover, in 
Stat2−/− mice, which are highly susceptible to ZIKV infection and recapitulate virus spread to the CNS and other 
organs, African strains of ZIKV induced a higher level of inflammatory cytokines and severe neurological symp-
toms followed by death, compared to the Asian strains that rarely caused any lethality35. Since current immu-
nocompetent mouse models for ZIKV are not susceptible to viremia or lethal outcome, and type I/II interferon 
receptor-knockout mice (e.g. AG129 mice) used extensively as a challenge model for ZIKV vaccine candidates, do 
not recapitulate normal immune responses of human vaccinees, our newly developed i.c. challenge model19 using 
a neurovirulent African strain of ZIKV, represents a stringent test of immunity in a normal mouse vaccinated by 
the i.m. route.

Under normal circumstances (e.g. humans bitten by ZIKV-infected mosquito), it is expected that a high level 
of protection against ZIKV infection will be afforded by MVA-ZIKA-NS1 immunization through humoral and 

Figure 4.  IgG Isotype specificity, surface expression of NS1 proteins, ADCC, complement fixation, and T 
cell responses of MVA-ZIKV-NS1 antisera. (a) The magnitude of Ig isotype specificity of immune sera from 
MVA-ZIKV-NS1 immunized mice was determined by ELISA, using rabbit anti-mouse immunoglobulin 
isotype-specific antibodies recognizing IgG1, IgG2a, IgG2b, IgG3, IgM, or IgA antibodies. (b) NS1-expression 
of inoculated Vero cells assayed by flow cytometric analysis. (c) ADCC activity observed following incubation 
of ZIKV-infected Vero cells (target cells) with serial dilutions of immune sera generated from MVA-ZIKV-NS1, 
Adeno-prME VLPs24, or naïve sera in the presence of effector cells (Jurkat cell line). (d) Complement-mediated 
lysis of ZIKV-infected Vero cells. C′, native complement, ΔC′, heat inactivated complement. Naïve sera, 
sera from sham immunized mice. (e,f) T cell responses of immunized mice. (f) ICS analysis of CD8+ T cells 
demonstrated IL2 and IFNγ production in the CD8+ T cell subset 10 days post-vaccination. (e) No appreciable 
cytokine production was observed in CD4+ T cells by this time.
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cellular responses. The titer of anti-NS1 antibodies in single and prime-boost regimen increased after challenge 
14.3- and 3.1-fold, respectively, indicating that the prime-boost vaccination series might have limited challenge 
virus replication more effectively than a single immunization. Moreover, the African challenge virus induced 
de novo a high level of anti-E antibodies that bound and neutralized the heterologous Puerto Rican strain com-
parable to the level that was observed with the 2 unvaccinated mice that survived the challenge and human 
ZIKV positive sera confirming that ZIKV constitutes a single serotype5. There was also a correlation between the 
level of binding (ELISA) and neutralizing antibodies post-challenge in mice, consistent with what has recently 
been observed with ZIKV infection of rhesus monkeys21. In line with lack of weight loss, any adverse disease 
symptoms and complete survival of vaccinated mice, we could not find any residual ZIKV at the end of obser-
vation day, whereas control mice died with a high burden of brain virus (up to 8 log10 PFU/g of tissue) between 
Days 5–8 post-challenge. It appears that the virus clearance in brains of vaccinated mice occurred at ≤5 days 
post-challenge.

The strong NS1-specific CD8+ T cell response from single dose vaccinated mice, most likely contributed to 
clearance of the virus from the brain after the i.c. challenge, as has been shown with yellow fever and West Nile 
virus infected mice21,36. The lack of any significant CD4+ T cell response in our experiment on Day 10 was consist-
ent with a report where appearance of CD4+ T cell response in ZIKV infected Rhesus monkeys was not observed 
until after production of antibody and CD8+ responses, at 2 weeks post-infection21.

We did not attempt to measure viremia in sera of mice post-challenge because i) we did not want to put ani-
mals under additional stress by bleeding procedures which could adversely affect their survival outcome, and ii) 
no peripheral viremia could previously be found after the i.c. inoculation with the MR766 virus19. Since the pro-
tection of an NS1-based vaccine requires some levels of virus replication post-challenge (to express NS1 antigens 
targeted for antibody and T cell immune responses), future studies will include tests for prevention of viremia 
and protection of immunized immunocompetent mice administered type-I anti-interferon receptor monoclonal 
antibody prior to subcutaneous challenge with ZIKV.

Figure 5.  Determination of brain virus titers and vector immunity. (a) Brain titers after single and (b) prime-
boost immunizations. Post-challenge, mice that displayed clinical signs of illness, including weight loss, were 
euthanized. All surviving mice were euthanized on Day 21 post-challenge. Brains were titrated on Vero cells 
by plaque assay to determine levels of ZIKV, as described previously26. Individual points are shown for each 
mouse. The limit of detection (LOD) was 1.7 log10 PFU/gram. Brain samples with undetectable viremia are 
shown at this limit. (c) Brain titers from singly immunized and control vaccinated mice at 5 dpi. (d) Mice 
were immunized with MVA-ZIKV-NS1 or with PBS, and subsequently (4 weeks later) immunized with MVA-
EBOV18. (e) Four weeks post-MVA-EBOV immunization, mice were bled and assessed for EBOV GP endpoint 
titers by ELISA, and compared to naïve mouse sera.
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NS1 has been shown to play a critical role in enhancing Ae. aegypti oral susceptibility37, and a mutation in NS1 
gene (A188V) of the emergent Asian genotype associated with higher levels of secreted NS1 has been proposed to 
have contributed to further enhancement of oral susceptibility38. Furthermore, polyclonal sera generated against 
NS1 and administered in infectious blood meals was demonstrated to attenuate ZIKV mosquito infectivity38. 
Therefore, we expect that our NS1-based vaccine could not only protect individuals against symptomatic ZIKV 
disease, without any risk of ADE, but could also reduce infection rates in the mosquito vector, thus interrupting 
ZIKV transmission in areas of high endemicity with lower vaccine coverage.

Materials and Methods
Cell Lines.  Vero cells were obtained from ATCC and were authenticated by COI assay. Mycoplasma con-
tamination was determined by Hoechst DNA stain, Agar culture, and PCR. Chicken embryo fibroblasts (CEF) 
were obtained from Charles RiverLaboratories. Mycoplasma contamination was determined by serum plate 
agglutination.

Construction of vaccine viruses.  The MVA-vectored ZIKV vaccine candidate (MVA-ZIKV-NS1) expressing 
the ZIKV NS1 protein was constructed using shuttle vectors originally developed in the laboratory of Dr. Bernard 
Moss. These shuttle vectors have proven to yield stable vaccine inserts with high, but non-toxic, levels of expression 
with HIV and hemorrhagic fever virus vaccine candidates39,40. The NS1 sequence (strain Suriname 2015, Genbank 
KU312312) was inserted into a restructured and modified deletion III between the A50R and B1R genes (Fig. 1a). 
The NS1 gene sequence was codon optimized for MVA with synonymous mutations introduced to interrupt 
homo-polymer sequences (>4 G/C and >4 A/T) to reduce RNA polymerase errors that could lead to frameshifts. 
Inserted sequences were edited for vaccinia-specific terminators to remove motifs that could lead to premature 
termination40. All vaccine inserts were placed under the modified H5 early/late vaccinia promoter as described 
previously. The recombinant virus was rescued by homologous recombination into CEF cells infected with MVA 
parental virus and transfected with MVA shuttle virus expressing ZIKV NS1 under the control of a vaccinia virus 
early-late promoter. The shuttle plasmid also expresses a green fluorescent protein (GFP) as reporter. The ZIKV NS1 
and GFP are flanked by MVA sequences needed for recombination. The GFP expressing virus was clone purified 
by limiting dilutions until cleaned from the parental virus. Cloning was continued until the GFP has been removed 
by homologous recombination. The virus was then scaled up in CEF cells. All cloning and virus production work 
were performed in a dedicated room at GeoVax, with full traceability and complete documentation of all steps using 
Bovine Spongiform encephalopathy/Transmissible Spongiform Encephalopathy (BSE/TSE)-free raw materials so 
the virus stock can be directly used for production of a Pre-Master virus seed during cGMP manufacturing.

Western blots.  DF1, continous chicken fibroblasts, cells were infected with MVA-ZIKV-NS1 at multiplicity 
of infection (MOI) of 0.1. Cell lysates and supernatants were harvested at 48 hrs post-infection and loaded onto 
12.5% SDS gel; the expression of full-length NS1 was confirmed by Western blot using anti-ZIKV-NS1-protein 
mouse monoclonal antibody (IgG1) from Aalto Bio Reagents, Catalog # AZ1225. Recombinant ZIKV NS1 from 
Sino Biological served as a positive control (Fig. 1b).

Preparation of Stock viruses for vaccination.  MVA-ZIKV-NS1 vaccine stocks were produced in pri-
mary CEF obtained from Charles River Laboratories. Briefly, cells were inoculated at an MOI of 0.01, infected 
cells harvested at 3 days PI, and viruses were purified using sucrose gradient centrifugation. Titers were deter-
mined as TCID50 by limiting dilution in DF1 cells. Potency was measured by immunostaining plaques on DF1 
cells inoculated with vaccine candidates. Plaques were stained with antibodies specific for ZIKV NS1 protein 
(Aalto Catalog # AZ1225) and MVA (provided by Dr. Moss).

Immunogenicity.  Six-week-old female CD-1/ICR mice were immunized by the i.m. route with 107 TCID50 
MVA-ZIKV-NS1 in 0.1 mL or phosphate buffered saline (PBS) following a prime-only or a prime-boost regimen, 
respectively. Mice in the prime-only regimen were immunized once on Day 0, while those in the prime-boost 
regimen were immunized on Days 0 and 28. To assess the potential that pre-existing immunity from previous 
vaccination with an MVA-vectored vaccine could interfere with immunogenicity from subsequent immunization, 
groups of eight 6-week-old CD-1/ICR mice were immunized with 1 × 107 TCID50 MVA-ZIKV-NS1 or PBS. All 
mice were bled 4 weeks later and were vaccinated with 1 × 107 TCID50 MVA-EBOV (Fig. 5d). Mice were termi-
nally bled by cardiac puncture 4 weeks later for serum isolation. All protocols and practices for the handling and 
manipulation of animals were approved by the IACUC at the Centers for Disease Control and Prevention and 
were in accordance with the guidelines of the American Veterinary Medical Association (AVMA) for humane 
treatment of laboratory animals.

ELISA.  Whole blood samples were obtained by cheek puncture just prior to immunization, at Days 14 and 28 
after each vaccination, and on Day 24 after challenge. Sera were obtained by centrifugation of the whole blood 
samples in serum separator tubes at 3500-xg for 5 min. Nunc-Maxisorp flat-bottom 96-well plates (ThermoFisher 
Scientific) were coated overnight at 4° C with either ZIKV NS1 protein (Sino Biological) at 1 μg/mL in PBS, 
recombinant Ebola virus glycoprotein (IBT Bioservices) at 1 μg/mL in PBS, or ZIKV Cos-1 prME antigen at 
1:800 in bicarbonate buffer. Plates were washed 4 times with phosphate buffered saline (PBS) +0.05% Tween-20 
(PBST). Next, the plates were blocked with StartingBlock Block Buffer (ThermoFisher Scientific) for 5 minutes 
at room temperature. Serially diluted heat-inactivated mouse serum samples were added to wells and incubated 
for 1 hour at 37° C. After washing with PBST, goat anti-mouse IgG-HRP (ImmunoReagents) was added to each 
well and incubated for 1 hour at 37° C. After a final washing, SureBlue TMB (3,3′, 5, 5′ – Tetramethylbenzidine) 
1-component substrate solution (KPL) was added to each well, incubated in the dark at room temperature for 
10 minutes, and stopped with 1 N hydrochloric acid (HCl). Optical density at 450 nm was determined using a 



www.nature.com/scientificreports/

9Scientific Reports | 7: 14769  | DOI:10.1038/s41598-017-15039-8

Vmax Kinetic ELISA Absorbance Microplate Reader (Molecular Devices). Normalized absorbance values were 
determined by first subtracting optical density values of blank negative control wells. Endpoint titer was deter-
mined by the dilution at which the optical density equaled 0.03 (Fig. 1c,d).

Serum isotyping assay.  To investigate the antibody isotype that predominates the anti-NS1 humoral response, 
an NS1-antigen specific isotyping assay was performed by adapting a commercially available mouse monoclonal 
antibody isotyping kit (Sigma-Aldrich). ELISA plates were coated overnight at 4° C with cell lysate of ZIKV-infected 
Vero cells. The plates were washed with PBST, then blocked for 1 hour at room temperature with PBS + 1% BSA 
(PBSB) buffer. Immune sera were diluted 1:1000 in PBSB buffer, applied to the plate, and incubated 1 hour at 
37° C. Plates were washed as previously, then incubated with 1:1000 dilution in PBSB of goat anti-mouse-IgG1, 
-IgG2a, -IgG2b, -IgG3, -IgM, or -IgA, and incubated for 1 hour at room temperature. Following washing, the 
plates were incubated with 1:5000 dilution in PBSB of horseradish peroxidase (HRP)-conjugated rabbit anti-goat 
Ig (Sigma-Aldrich), and incubated at room temperature for 30 minutes. After washing, SureBlue TMB substrate 
solution (KPL) was applied to the wells of the plate and incubated 15 minutes at room temperature, quenched with 
an equal volume 1 N HCl, and OD (405 nm) was measured on a Vmax plate reader (Molecular Devices) (Fig. 4a).

Protective Efficacy.  A representative African (MR766) ZIKV strain was employed as a challenge strain 
based on previously demonstrated age-independent mortality of CD-1/ICR mice exposed i.c.19. The MR766 virus 
is the prototype isolate from Uganda from 1947, and had been passaged up to 149 times in suckling mouse 
brain and twice in Vero cell culture. Groups of eleven previously singly age-matched immunized or naïve 
(PBS-immunized control) female CD-1/ICR mice (Charles River) were inoculated i.c. following isoflurane 
anesthesia in the right brain hemisphere with a 30-gauge needle affixed to a Hamilton syringe sheathed by a 
pipette tip allowing no more than a 4-mm needle penetrance into the skull cavity. For the i.c. inoculations, 5 log10 
plaque forming units (PFU) diluted in PBS or PBS alone were administered in a 10 µL inoculum. Inoculated mice 
were placed back in their cages and monitored for recovery from anesthesia. All inoculated mice were moni-
tored twice daily for clinical signs of morbidity (e.g. incoordination, ataxia, limb weakness/paralysis or weight 
loss ≥15% body weight) (Fig. 2a,b). Upon observation of morbidity in any group, monitoring was increased to 
four times daily. Any mouse that was identified with clinical signs that precluded ambulation or demonstrated 
>15% weight loss criteria was euthanized by isoflurane anesthesia followed by cervical dislocation (Fig. 5a–c). 
Just prior to euthanasia, mice were bled by cardiac puncture. Following cervical dislocation, brains were removed 
and weighed. Viral titers from the brains were determined by homogenizing brain tissue in BA-1 media using a 
pestle, clarifying by centrifugation, and plaque titrating on Vero cells as described previously25. All animal studies 
were conducted under approved IACUC protocols at the Centers for Disease Control and Prevention. In a sepa-
rate experiment, three mice from both the PBS and the single MVA-ZIKV-NS1 immunization groups were sac-
rificed as described above at 5 days post infection and brain titers were determined as described above (Fig. 5c). 
Additionally, 15 female CD-1/ICR mice that were given two vaccinations at 0 and 28 days and 8 CD-1/ICR PBS 
immunized mice were challenged by i.c. inoculation and followed as described above (Fig. 2b,d).

Plaque Reduction Neutralization assay.  A plaque double-overlay assay was performed to determine 
neutralizing titers of mouse serum. Briefly, sera were heat-inactivated at 56° C for 30 minutes, serially diluted 
two-fold in 96 well plates, and 100 PFU of ZIKV strain PRVABC59 was added to an equal volume of each serum 
dilution. After incubating at 37° C for 2 hours, the serum/virus mixture was used to inoculate confluent Vero cells 
in 6 well plates. After 1 hour, an agar overlay was added to each well and cells were incubated at 37° C. On Day 3 
post-inoculation, a second agar overlay containing neutral red was added to each well. Plaques were counted on 
Day 4 post-inoculation. PRNT50 was determined as the reciprocal of the serum dilution that inhibited ≥50% of 
the tested ZIKV inoculum (Fig. 3b).

ADCC assay.  Sera from vaccinated or control mice were tested for ADCC activity against ZIKV-infected 
Vero cells using an ADCC Reporter Bioassay (Promega), following the manufacturer’s guidelines. In summary, 
Vero cells were grown to 90–95% confluency and inoculated with ZIKV (strain PRVABC59) at an MOI of 0.1 
in DMEM medium +2% FBS. The cells were incubated at 37° C with 5% CO2 for 48 hours, then trypsinized, 
washed with PBS, and resuspended in ADCC assay buffer. A small aliquot of the cells was set aside to assay for 
the presence of cell surface NS1 antigens by flow cytometric analysis using MVA-ZIKV-NS1 sera (pooled from 
Day 28 post-boost mouse sera) and mouse monoclonal anti-ZIKV NS1 protein (Aalto Bio Reagents) as a con-
trol (Fig. 4b). Mouse sera were serial diluted in ADCC assay buffer with a starting dilution of 1:10. 1.25 × 104 
ZIKV-infected Vero target cells were plated into individual wells of a 96-well plate together with 7.5 × 104 effector 
cells, for an effector-to-target ratio of 6:1. The effector cells consisted of a Jurkat cell line stably expressing FcγRIIIa 
and expressing luciferase behind an NFAT promoter. In this bioassay ADCC activity is read out as a function of 
luciferase activity in the effector cells. After plating the cells, the serially-diluted sera were added to the wells, gen-
tly mixed, and the plate was placed at 37° C with 5% CO2 for 6 hours. The plate was then equilibrated to room tem-
perature for 15 minutes. Bio-Glo luciferase Assay Reagent (Promega) was added to the wells, incubated for 10 min 
at room temperature, and finally luminescence was measured using a SpectraMax L plate reader (Molecular 
Devices) set with an acquisition time of 0.1 seconds. Sera from mice immunized with adenovirus expressing 
ZIKV prME were used as a control. Endpoint titers were calculated as the reciprocal of the lowest serum dilution 
that yielded a signal above the mean +2 standard deviations of naïve sera samples (Fig. 4c).

Complement-mediated cellular cytotoxicity assay.  Vero cells infected with ZIKV (strain PRVABC59) 
for 48 hours with an MOI of 0.1 were used as target cells to measure complement-mediated cellular cytotoxicity. 
The cells were incubated at 37° C in the presence of 1:20 dilution of pooled anti-MVA-ZIKV-NS1 sera or pooled 
naïve sera and 1:10 dilution of rabbit complement (Pel-Freez Biologicals), or heat-inactivated rabbit complement 
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(inactivated by treatment at 56° C for 30 minutes) and 1 µg/mL propidium iodide. After 30 minutes incubation, the 
cells were assayed for viability by measuring inclusion of propidium iodide by flow cytometry (BD FACSCanto). 
Measurements were repeated at 90 minutes, a time point chosen because previous experiments demonstrated 
complete specific lysis by this time. Percent specific lysis was calculated as the number of dead cells measured at 
30 minutes divided by the maximal number of cells lysed at 90 minutes (Fig. 4d).

T cell assay.  CD-1/ICR mice immunized once with 1 × 107 TCID50 MVA-ZIKV-NS1 vaccine were sacrificed 
10 days after immunization, and spleens were harvested. Naïve mouse spleens were harvested in parallel. Isolated 
splenocytes were analyzed by intracellular cytokine staining following standard protocols. In short, 106 spleno-
cytes were stimulated with 0.1 µg ZIKV NS1 peptide library (JPT Peptide Technology), 0.1 µg HIV Env peptide 
library (21st Century Biochemicals) or mock stimulated. Incubation proceeded for 6 hours at 37° C +5% CO2 and 
GolgiPlug (BD Biosciences) was added at a concentration of 1.0 µL/mL for the last 4 hours of the incubation. The 
splenocytes were stained with Live/Dead Fixable Green Dead Cell Stain (ThermoFisher) at room temperature for 
20 minutes. The samples were treated with Cytofix/Cytoperm (BD Biosciences) at 4° C for 20 minutes and were 
stained with CD3 APC-CY7, CD4 PE-Cy7, CD8 PerCP, IL2 PE, and IFN-γ Alexa647 (all flow cytometry antibod-
ies from BD Biosciences). Samples were analyzed with a FACSCanto flow cytometer (BD Biosciences) utilizing 
FACSDiva software. Analysis was performed with FlowJo software. Cytokine responses were scored as a percent 
of total CD4+ (Fig. 4e) or CD8+ (Fig. 4f) T cells.

Statistical Analyses.  Analysis of data was performed using GraphPad Prism (GraphPad Software). 
Comparisons between one group and another were performed using a student t-test. To test for pairwise differ-
ences between groups, an analysis of variance (ANOVA) and Tukey’s test of multiple comparisons was performed. 
Correlations were performed by Spearman rank-correlation tests. A p value less than 0.05 was considered statis-
tically significant.

A sample size of 8 mice was used for controls and based on previous assessment would expect to result in >2 
survivors (75% virulence). We previously used 8 mice for each group, and the number was determined by using 
the PASS program with a two proportions power analysis. We found that a group sample size of 8 will achieve 
92% power to detect a difference of 0.79 (set P1-control group at 0.01 proportion, which means that less than 
1% survive; and P2-vaccinated group at 0.8 to 0.99 proportion which means we only indicate that the vaccine 
is efficacious if it is protective for at least 80% of vaccinated mice) between the null hypothesis that both group 
proportions are 0.01 and the alternative hypothesis that the proportion in group 2 is 0.8 using a 2-side Chi-square 
test with continuity correction and with a significance level of 0.05 (α).

Mice were randomly assigned to the different experimental groups, and no mice were excluded from the 
analysis. No blinding was performed. Empirical assessments of weight and clinical symptomology were utilized 
as endpoints as described.

Approval.  All experimental protocols were approved by the IACUC at the National Centers for Diseases 
Control and Prevention, Ft. Collins, Colorado.

Accordance.  All methods were carried out in accordance with the relevant guidelines and regulations.

Data availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files).
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